Localization of type I benzodiazepine receptors to postsynaptic densities in bovine brain.
نویسندگان
چکیده
The subcellular localization of central-type benzodiazepine receptors in bovine cerebral cortex, cerebellum, hippocampus, and corpus striatum has been studied. In all regions except for the corpus striatum, benzodiazepine receptors are most highly enriched in purified postsynaptic densities (PSDs) prepared by Triton X-100/hypotonic lysis of purified synaptosomal plasma membranes. Benzodiazepine receptor enrichment in PSDs varies regionally, following the order cerebellum (approximately 8.5-fold enriched relative to crude P2 membranes) greater than cerebral cortex greater than hippocampus greater than striatum (no significant enrichment); the percentage of putative type I benzodiazepine receptors in each of these brain regions follows the same rank order. In cerebral cortex, analysis of displacement of the benzodiazepine antagonist [3H]Ro-15-1788 by the type I-selective drug CL-218,872 reveals that PSDs contain type I benzodiazepine receptors exclusively; other subcellular fractions contain mixtures of type I and type II benzodiazepine receptors. Benzodiazepine receptors in PSDs resist further extraction with detergent but can be solubilized with detergent containing greater than or equal to 0.2 M NaCl. The enrichment of detergent-resistant/detergent-plus-salt extractable type I benzodiazepine receptors in PSDs might account in part for the differential solubilization of type I and type II benzodiazepine receptors from crude brain membranes previously reported. The benzodiazepine-binding protein in cerebral cortical PSDs was identified by photoaffinity labeling with [3H]flunitrazepam followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography. The PSD benzodiazepine-binding protein is identical in molecular weight to the binding protein from whole brain; partial tryptic and alpha-chymotryptic fingerprints are also very similar in PSDs and whole brain.
منابع مشابه
(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملLocalization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. Characterization of AKAP 79.
Postsynaptic densities (PSD) are a network of proteins located on the internal surface of excitatory synapses just inside the postsynaptic membrane. Enzymes associated with the PSD are optimally positioned to respond to signals transduced across the postsynaptic membrane resulting from excitatory synaptic transmission or neurotransmitter release. We present evidence suggesting that type II cAMP...
متن کاملResolving GABAA/benzodiazepine receptors: cellular and subcellular localization in the CNS with monoclonal antibodies.
Monoclonal antibodies, raised against a purified GABAA/benzodiazepine receptor complex from bovine cerebral cortex, have been used to visualize the cellular and subcellular distribution of receptorlike immunoreactivity in the rat CNS, cat spinal cord, and bovine and postmortem human brain. Two different antibodies have been used for these studies; bd-17 recognizes the beta-subunit (Mr 55 kDa) i...
متن کاملPerspectives in Pharmacology A New Benzodiazepine Pharmacology
Classical benzodiazepine drugs are in wide clinical use as anxiolytics, hypnotics, anticonvulsants, and muscle relaxants. They act by enhancing the -aminobutyric acidA (GABAA) receptor function in the central nervous system. The pharmacological relevance of the multitude of structurally diverse GABAA receptor subtypes has only recently been identified. Based on an in vivo point mutation strateg...
متن کاملReduction of zolpidem sensitivity in a freeze lesion model of neocortical dysgenesis.
Early postnatal freeze lesions in rat neocortex produce anatomic abnormalities resembling those observed in human patients with seizure disorders. Although in vitro brain slices containing the lesion are hyperexcitable, the mechanisms of this alteration have yet to be elucidated. To test the hypothesis that changes in postsynaptic inhibitory receptors may underlie this hyperexcitability, we exa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 5 4 شماره
صفحات -
تاریخ انتشار 1985